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Example 14.9. Evaluation of Teaching Techniques: See Figure
24.

Section 8.3 The Nature of Hypothesis Testing 363

E X A M P L E  8 . 1 0

WRITING HYPOTHESES

You suspect that a brand-name detergent outperforms the store’s brand of
detergent, and you wish to test the two detergents because you would prefer
to buy the cheaper store brand. State the null and alternative hypotheses.

Solution
Your suspicion, “The brand-name detergent outperforms the store brand,” is
the reason for the test and therefore becomes the alternative hypothesis.

Ho: “There is no difference in detergent performance.”
Ha: “The brand-name detergent performs better than the store brand.”

However, as a consumer, you are hoping not to reject the null hypothe-
sis for budgetary reasons.

A P P L I E D  E X A M P L E  8 . 1 1

Occasionally it might be reasonable to hope that the evidence does not lead

to a rejection of the null hypothesis. Such is the case in Example 8.10.

Before returning to our example about the party, we need to look at the four

possible outcomes that could result from the null hypothesis being either true or

false and the decision being either to “reject Ho” or to “fail to reject Ho.” Table 8.3

shows these four possible outcomes.

A type A correct decision occurs when the null hypothesis is true and we

decide in its favor. A type B correct decision occurs when the null hypothesis is

false and the decision is in opposition to the null hypothesis. A type I error is

EVALUATION OF TEACHING TECHNIQUES

ABSTRACT: THIS STUDY TESTS THE EFFECT OF
HOMEWORK COLLECTION AND QUIZZES ON EXAM
SCORES.

The hypothesis for this study is

that an instructor can improve a stu-

dent’s performance (exam scores)

through influencing the student’s per-

ceived effort-reward probability. An

instructor accomplishes this by assign-

ing tasks (teaching techniques) which

are a part of a student’s grade and are

perceived by the student as a means

of improving his or her grade in the

class. The student is motivated to

increase effort to complete those

tasks which should also improve

understanding of course material.The

expected final result is improved

exam scores. The null hypothesis for

this study is:

Ho: Teaching techniques have no

significant effect on students’ exam

scores. . . .

Source: “Evaluation of Teaching Techniques” by David R. Vruwink and Janon R. Otto, published in
The Accounting Review, Vol. LXII, No. 2, April 1987. Reprinted by permission.

Video tutorial available—logon and learn more at cengagebrain.com
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Figure 24: Evaluation of Teaching Techniques

14.10. Strong vs. Weak Conclusions

(a) Since the analyst can directly control the probability of wrongly
rejecting H0, we always think of rejection of the null hypoth-
esis H0 as a strong conclusion.

(b) It is customary to think of the decision to accept H0 as a
weak conclusion, unless we know that β is acceptably small.
Therefore, rather than saying we “accept H0”, we prefer the
terminology “fail to reject H0.”
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14.11. Interpretation of “failing to reject H0”:

(a) We have not found “sufficiently strong” evidence “to reject
H0” (or “in support of H1” or “to make a strong statement”)
at the level of significance being used for the test.

(b) Does not necessarily mean that H0 is true.

(c) It may simply mean that more data are required to reach a
strong conclusion.

Example 14.12. Useful analog between hypothesis testing and a
jury trial: In a trial the defendant is assumed innocent (this is
like assuming the null hypothesis to be true). If strong evidence
is found to the contrary, the defendant is declared to be guilty
(we reject the null hypothesis). If there is insufficient evidence the
defendant is declared to be not guilty. This is not the same as
proving the defendant innocent and so, like failing to reject the
null hypothesis, it is a weak conclusion.

14.13. Reporting the results of a hypothesis test

(a) Fixed significance level testing : State that the null hy-
pothesis was or was not rejected at a specified α-value.

• For example, we can say that H0 : µ = 50 was rejected at
the 0.05 level of significance.

• May be inadequate because

(i) It gives the decision maker no idea about whether the
computed value of the test statistic was just barely
in the rejection region or whether it was very far into
this region.

(ii) It imposes the predefined α on other users of the in-
formation. Some decision makers might be uncom-
fortable with the risks implied by the chosen α.

(b) P -value (probability-value) approach

• Adopted widely in practice.
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• Determine the exact level of significance associated with
the calculated value of the test statistic.

• Gained popularity in recent years, largely as a result of
the convenience and the “number-crunching” ability of
the computer.

Definition 14.14. The P -value is the smallest α that would lead
to rejection of H0 with the given data.

• For a given set of data, the P -value is sometimes referred to
as the observed level of significance.

14.15. Connection between Hypothesis Tests and Confidence In-
tervals: If [`, u] is a confidence interval for the parameter µ, the
test of size α of the hypothesis

H0 : µ = µ0

H1 : µ 6= µ0

will lead to rejection ofH0 if and only if µ0 is not in the 100(1−α)%
CI [`, u].

Although hypothesis tests and CIs are equivalent procedures
insofar as decision making or inference about µ is concerned, each
provides somewhat different insights. For instance, the confidence
interval provides a range of likely values for µ at a stated confi-
dence level, whereas hypothesis testing is an easy framework for
displaying the risk levels such as the P -value associated with a
specific decision.

14.1 Two-Tail Testing of a Mean, Population Variance
Known

Suppose that we wish to test the hypotheses

H0 : µ = µ0

H1 : µ 6= µ0

where µ0 is a specified constant. We have a random sampleX1, X2, . . . , Xn

from a normal population (or non-normal population but n ≥ 30).
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Recall that

Situations can occur where the population mean is unknown
but past experience has provided us with a trustworthy value for
the population standard deviation. Although this possibility is
more likely in an industrial production setting, it can sometimes
apply to employees, consumers, or other nonmechanical entities.

14.16. It is usually more convenient to standardize the sample
mean and use a test statistic based on the standard normal distri-
bution. That is, the test procedure for H0 : µ = µ0 uses the test
statistic24, z-test :

The value of the calculated test statistic is used in conjunction
with a decision rule to determine either “reject H0” or “fail
to reject H0”. This decision rule must be established prior to
collecting the data; it specifies how you will reach the decision.

14.17. To complete a hypothesis test, you will need to write
a conclusion that carefully describes the meaning of the decision
relative to the intent of the hypothesis test.

(a) If the decision is “reject H0”, then the conclusion should be
worded something like, “There is sufficient evidence at the
α level of significance to show that ... [the meaning of the
alternative hypothesis].”

(b) If the decision is “fail to reject H0”, then the conclusion should
be worded something like, “There is not sufficient evidence at
the α level of significance to show that . . . [the meaning of
the alternative hypothesis].”

24Test statistic is a random variable whose value is calculated from the sample data and is
used in making the decision “reject H0” or “fail to reject H0”.
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Example 14.18. When a robot welder is in adjustment, its mean
time to perform its task is 1.3250 minutes. Past experience has
found the standard deviation of the cycle time to be 0.0396 min-
utes. An incorrect mean operating time can disrupt the efficiency
of other activities along the production line. For a recent random
sample of 80 jobs, the mean cycle time for the welder was 1.3229
minutes. Does the machine appear to be in need of adjustment?

(a) Formulate the Null and Alternative Hypotheses:

(b) Select the Significance Level: The significance level used will
be α = 0.05.

If the machine is running properly, there is only a 0.05 proba-
bility of our making the mistake of concluding that it requires
adjustment.

(c) Identify Critical Values for the Test Statistic and State the
Decision Rule: The population standard deviation (σ) is known
and the sample size is large, so the normal distribution is ap-
propriate and the test statistic will be Z0, calculated as

(d) Identify Critical Values for the Test Statistic and State the
Decision Rule:
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The decision rule can be stated as “Reject H0 if calculated
Z0 < −1.96 or > +1.96, otherwise do not reject.”

(e) Compare Calculated and Critical Values and Reach a Con-
clusion for the Null Hypothesis: The calculated value, z0 =
−0.47, falls within the non-rejection region. Therefore, At the
0.05 level of significance, H0 cannot be rejected.

(f) Make the Related Business Decision: Based on these results,
the robot welder is not in need of adjustment. The difference
between the hypothesized population mean, µ0 = 1.3250 min-
utes, and the observed sample mean, x = 1.3229, is judged to
have been merely the result of chance variation.

• If we had used the sample to construct a 95% confidence inter-
val for µ, the interval would have been from 1.3142 to 1.3316
minutes.

Notice that the hypothesized value, µ0 = 1.3250 minutes,
falls within the 95% confidence intervalthat is, the confidence
interval tells us that µ could be 1.3250 minutes.

14.19. To test the null hypothesis using the P -value approach, we
first identify the most extreme critical value that the test statistic
would be capable of exceeding. This is equivalent to your jumping
as high as you can with no bar in place, then having the judges tell
you how high you would have cleared if there had been a crossbar.
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Then, we find the value of α corresponding to the extreme crit-
ical value. This is the same as the probability of observing a value
of the sample mean X that is at least as extreme as x, given that
H0 is true.

14.20. For the two-sided H1, the P -value is

P = 2 (1− Φ(|z0|)) .

Example 14.21. Continue from Example 14.18, we have z0 =
−0.47

14.22. To make a strong conclusion (rejection of H0), the P -value
should be “small”. See Figure 25.

Computer-Assisted Hypothesis Tests and p-values

When the hypothesis test is computer-assisted, the output will include a p-value
for your interpretation. Regardless of whether a p-value has been approximated
by your own calculations and table reference, or is a more exact value included in
a computer printout, it can be interpreted as follows:

Computer Solutions 10.1 shows how we can use Excel or Minitab to carry out
a hypothesis test for the mean when the population standard deviation is known or
assumed. In this case, we are replicating the hypothesis test in Figure 10.4, using the
40 data values in file CX10BULB. The printouts in Computer Solutions 10.1 show
the p-value (0.0132) for the test. This p-value is essentially making the following
statement: “If the population mean really is 1030 hours, there is only a 0.0132
probability of getting a sample mean this large (1061.6 hours) just by chance.”
Because the p-value is less than the level of significance we are using to reach our
conclusion (i.e., p-value � 0.0132 is � ), is rejected.H0: � � 1030� � 0.05

Interpreting the p-value in a computer printout:

Is the p-value < your specified level
of significance, a?

Yes

No

Reject the null hypothesis.  The sample result
is more extreme than you would have been
willing to attribute to chance.

Do not reject the null hypothesis.  The
sample result is not more extreme than you
would have been willing to attribute to chance.

324 Part 4: Hypothesis Testing

computer solutions 10.1

Hypothesis Test for Population Mean, � Known
These procedures show how to carry out a hypothesis test for the population mean when the population
standard deviation is known.

EXCEL

1
2
3
4
5
6
7
8
9

10
11
12

A B C D
Z-Test: Mean

hours
Mean 1061.61
Standard Deviation 93.60
Observations 40
Hypothesized Mean 1030
SIGMA 90
z Stat 2.221
P(Z<=z) one-tail 0.0132
z Critical one-tail 1.645
P(Z<=z) two-tail 0.0264
z Critical two-tail 1.96

Figure 25: Interpreting the P -value

14.2 Two-Tail Testing of a Mean, Population Variance
Unknown

The true standard deviation of a population will usually be un-
known. In which case, we cannot directly talk about

Z0 =
X − µ0

σ/
√
n
.

As in Section 13.2, when σ is unknown, a logical procedure is to
replace σ with the sample standard deviation S. The random
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variable Z0 now becomes

T0 =
X − µ0

S/
√
n
.

14.23. Test statistic, t-test for a sample mean:

T0 =
X − µ0

S/
√
n
.

If H0 is true, T0 has a t distribution with n − 1 degrees of
freedom. When we know the distribution of the test statistic when
H0 is true (this is often called the reference distribution or
the null distribution), we can calculate the P -value from this
distribution, or, if we use a fixed significance level approach, we
can locate the critical region to control the type I error probability
at the desired level.

14.24. Statistics software packages calculate and display P -values.
However, in working problems by hand, it is useful to be able to
find the P -value for a t-test. Because the t-table in Figure 23 con-
tains only 10 critical values for each t distribution, determining
the exact P -value from this table is usually impossible. However,
we can use the the t-table in Figure 23 to find lower and upper
bounds on the P -value.

14.3 Type I and Type II Errors: A Revisit

14.25. The statistician’s job is thus to “balance” the three values
of α, β, and n to achieve an acceptable testing situation.

14.26. α vs. β: Type I and type II errors are related. A decrease
in the probability of one type of error results in an increase in the
probability of the other, provided that the sample size n does not
change.

Definition 14.27. The power of a statistical test is the proba-
bility of correctly rejecting H0 when H1 is true.

= 1− β
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= probability of rejecting a false H0.

• Depend on the true value of the population mean µ, a quantity
that we do not know. So, we calculate it at each possible value
of the true mean µ.

◦ The power curve of the test is the plot of µ vs. 1− β.

◦ The operating characteristic (OC) curve is the plot
of µ vs. β.

14.28. Power curve construction: Assume different population
mean values at which H0 would be false, then determine the prob-
ability that an observed sample mean would fall into a rejection
region originally specified by the decision rule of the test.

14.29. In two-tail tests, the power curve 1 − β will have a zero
value when the assumed population mean µ equals the hypoth-
esized value µ0, then will increase toward 1.0 in both directions
from that assumed value for the mean.

• In appearance, it will somewhat resemble an upside-down nor-
mal curve.

• On the other hand, the OC curve (β) increases as the (as-
sumed) true value of the parameter (µ) approaches the value
µ0 hypothesized in H0. The value of β decreases as the differ-
ence between the assumed true mean µ and the hypothesized
value µ0 increases.

14.30. For a fixed decision rule (same rejection and non-rejection
regions), we can decrease both α and β by using a larger sample
size n.

14.31. If a test is carried out at a specified significance level (e.g.,
α = 0.05), using a larger sample size will change the decision rule
but will not change α. This is because α has been decided upon
in advance. However, in this situation the larger sample size will
reduce the value of β.

Summary: an increase in sample size n reduces β, provided that
α is held constant.
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15 Simple Linear Regression

Many problems in engineering and the sciences involve a study or
analysis of the relationship between two or more variables. There
are many situations where the relationship between variables is
not deterministic.

Definition 15.1. The collection of statistical tools that are used to
model and explore relationships between variables that are related
in a nondeterministic manner is called regression25 analysis .

In this section we present the simple situation where there is
only one independent or regressor predictor variable x and
the relationship with the response variable y is assumed to be
linear.

Definition 15.2. Simple linear regression model :

Y = β0 + β1x+ ε.

(a) ε is a random error with mean zero and (unknown) variance
σ2. The random errors corresponding to different observations
are also assumed to be uncorrelated random variables.

(b) The mean of the random variable Y is related to x by the
following straight-line relationship:

E [Y |x] = µY |x = β0 + β1x.

• The slope and intercept of the line are called regression
coefficients .

(c) For a fixed value of x the actual value of Y is determined
by the mean value function (the linear model) plus a random
error term ε.

25Historical Note: Sir Francis Galton first used the term regression analysis in a study of
the heights of fathers (x) and sons (y). Galton fit a least squares line and used it to predict
the son’s height from the father’s height. He found that if a father’s height was above average,
the son’s height would also be above average, but not by as much as the father’s height was.
A similar effect was observed for below average heights. That is, the son’s height “regressed”
toward the average. Consequently, Galton referred to the least squares line as a regression
line .
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(d) The variance of Y given x is

15.3. In most real-world problems, the values of the intercept and
slope (β0, β1) and the error variance σ2 will not be known, and they
must be estimated from sample data. Then this fitted regression
equation or model is typically used in prediction of future obser-
vations of Y , or for estimating the mean response at a particular
level of x.

15.4. Suppose that we have n pairs of observations

(x1, y1), (x2, y2), . . . , (xn, yn).

Figure 26 shows a typical scatter plot of observed data and a can-
didate for the estimated regression line. The estimates of β0 and
β1 should result in a line that is (in some sense) a “best fit” to the
data.

The German scientist Karl Gauss (1777-1855) proposed esti-
mating the parameters β0 and β1 to minimize the sum of the
squares of the vertical deviations in Figure 26.

We call this criterion for estimating the regression coefficients
the method of least squares.

Theorem 15.5. The least squares estimates of the intercept and
slope in the simple linear regression model are

β̂1 =
xy − (x) (y)

x2 − (x)2 =

n∑
i=1

xiyi −

(
n∑
i=1

xi

)(
n∑
i=1

yi

)
n

n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

n

β̂0 = y − β̂1x

• The line ŷ = β̂0 + β̂1x is called the fitted or estimated
regression line .

• The error in the fit of the model to the ith observation yi is
given by ei = yi − ŷi. This is called the residual .
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406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

previously, the expected value of Y for each value of x is

where the intercept �0 and the slope �1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where � is a random error with mean zero and (unknown) variance �2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of �0 and �1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
�0 and �1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of �0 and �1, say, and must satisfy

(11-5) 
�L

��1
`
�̂  0,�̂1

� 	2 a
n

i�1
1

 
yi 	 �̂0 	 �̂1xi2  xi � 0
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n

i�1
1

 
yi 	 �0 	 �1xi2

2

yi � �0 � �1 xi � �i,  i � 1, 2, p , n

Y � �0 � �1 x � �

E1Y 0  x2 � �0 � �1 x

x

y

Observed value
Data (y)

Estimated
regression line

Figure 11-3 Deviations of the data from the
estimated regression model.

JWCL232_c11_401-448.qxd  1/14/10  8:01 PM  Page 406

Figure 26: Deviations of the data from the estimated regression model.

15.6. Note that

β̂1 =
Sxy
Sxx

where

Sxy =
n∑
i=1

(xi − x) (yi − y) =
n∑
i=1

xiyi −

(
n∑
i=1

xi

)(
n∑
i=1

yi

)
n

and

Sxx =
n∑
i=1

(xi − x)2 =
n∑
i=1

x2
i −

(
n∑
i=1

xi

)2

n
=

n∑
i=1

x2
i − n(x)2

15.7. The residuals ei = yi − ŷi are used to obtain an estimate
of σ2. The sum of squares of the residuals, often called the error
sum of squares , is

SSE =
n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi)2 = SST − β̂1Sxy

where

SST = Syy =
n∑
i=1

(yi − y)2 =
n∑
i=1

y2
i −

(
n∑
i=1

yi

)2

n
=

n∑
i=1

y2
i − n(y)2
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Theorem 15.8. The expected value of SSE is

E [SSE] = (n− 2)σ2.

Therefore an unbiased estimator of σ2 is

σ̂2 =
SSE
n− 2

.
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